Key Data Set Information | |
Location | DE |
Geographical representativeness description | Der Datensatz bildet die länderspezifische Situation in Deutschland ab. Dabei werden Haupttechnologien, spezifische regionale Charakteristiken und ggf. Importstatistiken berücksichtigt. |
Reference year | 2015 |
Name |
|
Classification number | 8.6.01 |
Classification |
Class name
:
Hierarchy level
|
General comment on data set | Dieser Datensatz wurde nach der Europäischen Norm EN 15804 modelliert. Die Ergebnisse werden entsprechend den Modulen (z.B. A1-A3) nach EN 15804 dargestellt. |
Copyright | Yes |
Owner of data set | |
Quantitative reference | |
Reference flow(s) |
|
Time representativeness | |
Data set valid until | 2018 |
Time representativeness description | Jährlicher Durchschnitt |
Technological representativeness | |
Technology description including background system | Der Datensatz beschreibt die Nutzung einer Luft-Wasser Heizungs-Wärmepumpe mit außenliegendem Wärmetauscher und innenliegendem Verdichter (Split-Gerät), zur Anwendung im Niedertemperaturbereich (bis max. 60°C). Die Nennheizleistung beträgt 10kW. Die Leistungszahl (COP) bei 2°C Außenlufttemperatur und 35°C Vorlauftemperatur (A2/W35) wurde zu 3,1 angenommen. Ein Warmwasser Speicher und Befestigungsmittel sind nicht im Datensatz enthalten. Für die Wärmepumpe kann nach VDI Richtlinie 2067 von einer 20 jährigen durchschnittlichen Lebensdauer ausgegangen werden. Es wurde davon ausgegangen, dass große Geräte wie Heizkessel, Klima- und Lüftungsanlagen oder Fahrstühle zu 95% einem Recycling zugeführt werden. Für Rohre oder Kabel, die oft unterputzt sind wurde eine Recyclingrate von 90% angenommen. Die Recyclingquoten beziehen sich ausschließlich auf Metalle und Kunststoffe. Für mineralische Materialien wie Mineralwolle, Beton oder Keramik wurde eine Ablagerung auf einer Inertstoffdeponie angenommen. Es wurde angenommen das der Anteil an Metallen und Kunststoffen, der nicht einem Recycling zugeführt wird (5-10%) ebenfalls auf einer Inertstoffdeponie entsorgt wird (z.B. Kabelreste oder Rohrstücke im Bauschutt). Für die Kunststoffe wird davon ausgegangen, dass aufgrund der oft langen Lebensdauer und den verbundenen Verunreinigung nicht von einer stofflichen Verwertung ausgegangen werden kann und daher die Kunststoffe einer energetischen Verwertung in Müllverbrennungsanlagen (MVA) zugeführt werden. Für die Müllverbrennung wurde ein MVA-Modell mit durchschnittlichen europäischen Emissionswerten und Energieproduktion verwendet. In Abhängigkeit des zu verbrennenden Kunststoffes wurden unterschiedliche Prozesse mit den entsprechenden Elementarzusammensetzungen verwendet. Die Datensätze wurden in Zusammenarbeit mit der Confederation of European Waste-to-Energy Plants (CEWEP) erstellt und sind auf der Homepage der European Platform on LCA [EC 2008] verfügbar. Der aus der Kunststoffverbrennung erzeugte Strom sowie die erzeugte thermische Energie wurden mit dem europäischen Strom-bzw. Wärmemix gutgeschrieben. Die Gutschriften für das Recycling von Metallen oder der energetischen Verwertung von Kunststoffen, sowie die mit der Verwertung verbundenen Emissionen und Ressourcenverbräuche (Energie für Einschmelzen, Verbrennungsemissionen, Deponie) sind in den Datensätzen enthalten. Bei Materialen aus Eisen (Stahlbleche, Rohre, Grauguss) werden bei der Herstellung der Materialien bereits unterschiedliche Mengen an Stahlschrott eingesetzt. Diese Mengen wurden der recycelten Stahlmenge vor Zuführung in die Einschmelzung abgezogen, um keine Überwertung der Gutschriften zu erzeugen. Die Gutschrift wurde dann entsprechend mit primärem Stahl durchgeführt. Gutschriften für das Recycling von seltenen Erden oder Quecksilberemissionen aus Leuchtstofflampen konnten wegen fehlenden Daten nicht berücksichtigt werden. Es wurde davon ausgegangen, dass große Geräte wie Heizkessel, Klima- und Lüftungsanlagen oder Fahrstühle zu 95% einem Recycling zugeführt werden. Für Rohre oder Kabel, die oft unterputzt sind wurde eine Recyclingrate von 90% angenommen. Die Recyclingquoten beziehen sich ausschließlich auf Metalle und Kunststoffe. Für mineralische Materialien wie Mineralwolle, Beton oder Keramik wurde eine Ablagerung auf einer Inertstoffdeponie angenommen. Es wurde angenommen das der Anteil an Metallen und Kunststoffen, der nicht einem Recycling zugeführt wird (5-10%) ebenfalls auf einer Inertstoffdeponie entsorgt wird (z.B. Kabelreste oder Rohrstücke im Bauschutt). Für die Kunststoffe wird davon ausgegangen, dass aufgrund der oft langen Lebensdauer und den verbundenen Verunreinigung nicht von einer stofflichen Verwertung ausgegangen werden kann und daher die Kunststoffe einer energetischen Verwertung in Müllverbrennungsanlagen (MVA) zugeführt werden. Für die Müllverbrennung wurde ein MVA-Modell mit durchschnittlichen europäischen Emissionswerten und Energieproduktion verwendet. In Abhängigkeit des zu verbrennenden Kunststoffes wurden unterschiedliche Prozesse mit den entsprechenden Elementarzusammensetzungen verwendet. Die Datensätze wurden in Zusammenarbeit mit der Confederation of European Waste-to-Energy Plants (CEWEP) erstellt und sind auf der Homepage der European Platform on LCA [EC 2008] verfügbar. Der aus der Kunststoffverbrennung erzeugte Strom sowie die erzeugte thermische Energie wurden mit dem europäischen Strom-bzw. Wärmemix gutgeschrieben. Die Gutschriften für das Recycling von Metallen oder der energetischen Verwertung von Kunststoffen, sowie die mit der Verwertung verbundenen Emissionen und Ressourcenverbräuche (Energie für Einschmelzen, Verbrennungsemissionen, Deponie) sind in den Datensätzen enthalten. Bei Materialen aus Eisen (Stahlbleche, Rohre, Grauguss) werden bei der Herstellung der Materialien bereits unterschiedliche Mengen an Stahlschrott eingesetzt. Diese Mengen wurden der recycelten Stahlmenge vor Zuführung in die Einschmelzung abgezogen, um keine Überwertung der Gutschriften zu erzeugen. Die Gutschrift wurde dann entsprechend mit primärem Stahl durchgeführt. Gutschriften für das Recycling von seltenen Erden oder Quecksilberemissionen aus Leuchtstofflampen konnten wegen fehlenden Daten nicht berücksichtigt werden. Hintergrundsystem: Strom: Die Stromerzeugung wird entsprechend der länderspezifischen Randbedingungen modelliert. Die landesspezifische Analyse beinhaltet: 1.: Spezifische Kraftwerke der verschiedenen fossilen Energieträger und der Einsatz erneuerbarer Energien sind entsprechend der länderspezifischen Energieträgermixe modelliert. Die Analyse bezieht Stromimporte aus den Nachbarländern, Transmissions-und Verteilungsverluste und den Eigenverbrauch im Kraftwerk und bei der Verteilung bzw. Speicherung, z. B. durch Pumpspeicherwerke, ein. 2.: Die landes-/regionalspezifischen Technologiestandards sowie die Erzeugung in Elektrizitätskraftwerken und/oder in speziellen Kraftwerken mit Kraft-Wärme-Kopplung (KWK) sind berücksichtigt. 3.: Die länderspezifische Energieträgerbereitstellung (mit Anteil der Importe und/oder Eigenversorgung) einschließlich der Energieträger-Eigenschaften (z. B. Elementar- und Energiegehalte) werden berücksichtigt. 4.: Die Förderung, Produktion, Verarbeitung und Transportprozesse werden entsprechend der Situation im jeweiligen Stromerzeugerland modelliert. Die unterschiedlichen Produktions- und Verarbeitungsverfahren (Emissionen und Wirkungsgrade) in den verschiedenen Energieerzeugerländern werden einbezogen, z. B. Rohöl-Veredelungsverfahren oder Abfackel-Raten an den Ölplattformen. Thermische Energie, Prozessdampf: Die Erzeugung von Dampf und thermischer Energie in Heizkraftwerken wird entsprechend der landesspezifischen Situation (Emissionsgrenzwerte, Energieträgerbasis) modelliert. Der Wirkungsgrad für die thermische Energieerzeugung beträgt per Definition 100% des Energieträgereinsatzes. Für Prozessdampf liegt der Wirkungsgrad im Bereich von 85-95%. Die zur Heizenergie-Erzeugung verwendeten Energieträger werden entsprechend der nationalen Situation modelliert (siehe Kapitel Strom oben). Transporte: Alle relevanten und bekannten Transportprozesse in Form von See- und Binnenschiffsverkehr sowie Bahn-, Lkw- und der Leitungstransport sind enthalten. Energieträger: Die Energieträger werden entsprechend der spezifischen Versorgungslage modelliert (siehe Kapitel Strom oben). Raffinerieprodukte: Diesel, Benzin, technische Gase, Heizöl, Schmierstoffe und Rückstände, wie Bitumen, werden mit einem parametrierten länderspezifische Raffineriemodell modelliert. Das Raffinerie-Modell bezieht die länderspezifischen Veredelungsverfahren (z. B. Emissionspegel, interner Energieverbrauch etc.) und das länderspezifische Produktspektrum ein, das sich je nach Land stark unterscheiden kann. Die Rohöl-Förderung wird gemäß der länderspezifischen Situation mit den jeweiligen Energieträger-Eigenschaften modelliert. |
Flow diagram(s) or picture(s) |
Subtype | generic dataset |
Data sources, treatment and representativeness | |
Data source(s) used for this data set | |
Completeness |
Indicators of life cycle